Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 132024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647535

ABSTRACT

Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.


Acute myeloid leukemia (or AML for short) is a type of blood cancer characterized by abnormally high production of immature white blood cells. Despite advances in AML treatment, many patients relapse after an initially successful first round of treatment. As a result, understanding the factors contributing to relapse is essential for developing effective treatments for the disease. Like most cancers, AML can evolve because of changes to the DNA sequence in cells that cause them to grow uncontrollably or resist treatment. Alongside these genetic mutations, AML cells also undergo 'epigenetic' changes, where regions of the DNA are modified and genes can be switched on or off without altering the DNA sequence. Previous research has demonstrated that epigenetic changes contribute to the development of AML, however, it was not clear if these changes could also make cells resistant to treatment without acquiring new DNA mutations. Nuno, Azizi et al. addressed this question by analyzing the epigenetic states of AML cells from 26 patients at the time of their diagnosis and after treatment when the disease had relapsed. Analysis revealed that almost half of the patients with AML experienced a relapse without acquiring new DNA mutations. Instead, these AML cells developed specific epigenetic changes that helped them to resist cancer treatment. Moreover, studying individual AML cells from different patients showed that the cells became more epigenetically similar at relapse, suggesting that they converge towards a more treatment-resistant disease. Future experiments will determine exactly how these epigenetic changes lead to treatment resistance. Currently, most of the drugs used to treat AML are either chemotherapies or ones that target specific DNA mutations. The findings of Nuno, Azizi et al. suggest that drugs targeting specific epigenetic changes may be more effective for some patients. Further studies will be needed to determine which patients may benefit and which epigenetic drugs could be useful.


Subject(s)
Epigenesis, Genetic , Leukemia, Myeloid, Acute , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Humans , Recurrence , Mutation , Evolution, Molecular , Chromatin/genetics , Chromatin/metabolism , Neoplastic Stem Cells/pathology
2.
Blood Cancer Discov ; 5(3): 202-223, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38359087

ABSTRACT

Mutations in additional sex combs like 1 (ASXL1) confer poor prognosis both in myeloid malignancies and in premalignant clonal hematopoiesis (CH). However, the mechanisms by which these mutations contribute to disease initiation remain unresolved, and mutation-specific targeting has remained elusive. To address this, we developed a human disease model that recapitulates the disease trajectory from ASXL1-mutant CH to lethal myeloid malignancy. We demonstrate that mutations in ASXL1 lead to the expression of a functional, truncated protein and determine that truncated ASXL1 leads to global redistribution of the repressive chromatin mark H2AK119Ub, increased transposase-accessible chromatin, and activation of both myeloid and stem cell gene-expression programs. Finally, we demonstrate that H2AK119Ub levels are tied to truncated ASXL1 expression levels and leverage this observation to demonstrate that inhibition of the PRC1 complex might be an ASXL1-mutant-specific therapeutic vulnerability in both premalignant CH and myeloid malignancy. SIGNIFICANCE: Mutant ASXL1 is a common driver of CH and myeloid malignancy. Using primary human HSPCs, we determine that truncated ASXL1 leads to redistribution of H2AK119Ub and may affect therapeutic vulnerability to PRC1 inhibition.


Subject(s)
Mutation , Repressor Proteins , Humans , Repressor Proteins/genetics , Repressor Proteins/metabolism , Ubiquitination , Histones/metabolism , Histones/genetics , Hematopoiesis/genetics , Clonal Hematopoiesis/genetics
3.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873452

ABSTRACT

Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq. This analysis identified a relapse-specific chromatin accessibility signature for mutationally stable AML, suggesting that AML undergoes epigenetic evolution at relapse independent of mutational changes. Analysis of leukemia stem cell (LSC) chromatin changes at relapse indicated that this leukemic compartment underwent significantly less epigenetic evolution than non-LSCs, while epigenetic changes in non-LSCs reflected overall evolution of the bulk leukemia. Finally, we used single-cell ATAC-seq paired with mitochondrial sequencing (mtscATAC) to map clones from diagnosis into relapse along with their epigenetic features. We found that distinct mitochondrially-defined clones exhibit more similar chromatin accessibility at relapse relative to diagnosis, demonstrating convergent epigenetic evolution in relapsed AML. These results demonstrate that epigenetic evolution is a feature of relapsed AML and that convergent epigenetic evolution can occur following treatment with induction chemotherapy.

4.
J Clin Invest ; 133(19)2023 10 02.
Article in English | MEDLINE | ID: mdl-37581927

ABSTRACT

Disease-initiating mutations in the transcription factor RUNX1 occur as germline and somatic events that cause leukemias with particularly poor prognosis. However, the role of RUNX1 in leukemogenesis is not fully understood, and effective therapies for RUNX1-mutant leukemias remain elusive. Here, we used primary patient samples and a RUNX1-KO model in primary human hematopoietic cells to investigate how RUNX1 loss contributes to leukemic progression and to identify targetable vulnerabilities. Surprisingly, we found that RUNX1 loss decreased proliferative capacity and stem cell function. However, RUNX1-deficient cells selectively upregulated the IL-3 receptor. Exposure to IL-3, but not other JAK/STAT cytokines, rescued RUNX1-KO proliferative and competitive defects. Further, we demonstrated that RUNX1 loss repressed JAK/STAT signaling and rendered RUNX1-deficient cells sensitive to JAK inhibitors. Our study identifies a dependency of RUNX1-mutant leukemias on IL-3/JAK/STAT signaling, which may enable targeting of these aggressive blood cancers with existing agents.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Interleukin-3 , Leukemia , Humans , Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression Regulation , Interleukin-3/genetics , Interleukin-3/pharmacology , Leukemia/drug therapy , Leukemia/genetics , Signal Transduction
5.
Cancer Discov ; 13(5): 1164-1185, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36856575

ABSTRACT

Therapeutic cancer vaccination seeks to elicit activation of tumor-reactive T cells capable of recognizing tumor-associated antigens (TAA) and eradicating malignant cells. Here, we present a cancer vaccination approach utilizing myeloid-lineage reprogramming to directly convert cancer cells into tumor-reprogrammed antigen-presenting cells (TR-APC). Using syngeneic murine leukemia models, we demonstrate that TR-APCs acquire both myeloid phenotype and function, process and present endogenous TAAs, and potently stimulate TAA-specific CD4+ and CD8+ T cells. In vivo TR-APC induction elicits clonal expansion of cancer-specific T cells, establishes cancer-specific immune memory, and ultimately promotes leukemia eradication. We further show that both hematologic cancers and solid tumors, including sarcomas and carcinomas, are amenable to myeloid-lineage reprogramming into TR-APCs. Finally, we demonstrate the clinical applicability of this approach by generating TR-APCs from primary clinical specimens and stimulating autologous patient-derived T cells. Thus, TR-APCs represent a cancer vaccination therapeutic strategy with broad implications for clinical immuno-oncology. SIGNIFICANCE: Despite recent advances, the clinical benefit provided by cancer vaccination remains limited. We present a cancer vaccination approach leveraging myeloid-lineage reprogramming of cancer cells into APCs, which subsequently activate anticancer immunity through presentation of self-derived cancer antigens. Both hematologic and solid malignancies derive significant therapeutic benefit from reprogramming-based immunotherapy. This article is highlighted in the In This Issue feature, p. 1027.


Subject(s)
Cancer Vaccines , Leukemia , Neoplasms , Animals , Mice , Antigen-Presenting Cells , Neoplasms/therapy , Antigens, Neoplasm , Immunotherapy
6.
Elife ; 82019 04 09.
Article in English | MEDLINE | ID: mdl-30958261

ABSTRACT

Simultaneous measurement of cell lineage and cell fates is a longstanding goal in biomedicine. Here we describe EMBLEM, a strategy to track cell lineage using endogenous mitochondrial DNA variants in ATAC-seq data. We show that somatic mutations in mitochondrial DNA can reconstruct cell lineage relationships at single cell resolution with high sensitivity and specificity. Using EMBLEM, we define the genetic and epigenomic clonal evolution of hematopoietic stem cells and their progenies in patients with acute myeloid leukemia. EMBLEM extends lineage tracing to any eukaryotic organism without genetic engineering.


Subject(s)
Cell Lineage , Cytological Techniques/methods , DNA, Mitochondrial/genetics , Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/pathology , Mutation , Clonal Evolution , Humans , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...